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We investigate hole spin relaxation in intrinsic and p-type bulk GaAs from a fully microscopic kinetic spin
Bloch equation approach. In contrast to the previous study on hole spin dynamics, we explicitly include the
intraband coherence and the nonpolar hole-optical-phonon interaction, both of which are demonstrated to be of
great importance to the hole spin relaxation. The relative contributions of the D’yakonov-Perel’ and Elliott-
Yafet mechanisms on hole spin relaxation are also analyzed. In our calculation, the screening constant, playing
an important role in the hole spin relaxation, is treated with the random-phase approximation. In intrinsic
GaAs, our result shows good agreement with the experiment data at room temperature, where the hole spin
relaxation is demonstrated to be dominated by the Elliott-Yafet mechanism. We also find that the hole spin
relaxation strongly depends on the temperature and predict a valley in the density dependence of the hole spin
relaxation time at low temperature due to the hole-electron scattering. In p-type GaAs, we predict a peak in the
spin relaxation time against the hole density at low temperature, which originates from the distinct behaviors
of the screening in the degenerate and nondegenerate regimes. The competition between the screening and the
momentum exchange during scattering events can also lead to a valley in the density dependence of the hole
spin relaxation time in the low-density regime. At high temperature, the effect of the screening is suppressed
due to the small screening constant. Moreover, we predict a nonmonotonic dependence of the hole spin
relaxation time on temperature associated with the screening together with the hole-phonon scattering. Finally,
we find that the D’yakonov-Perel’ mechanism can markedly contribute to the hole spin relaxation in the
low-density case at moderate temperature and in the high-density case at low temperature, where the Elliott-
Yafet mechanism is suppressed due to the relatively weak scattering.
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I. INTRODUCTION

In the past decade, semiconductor spintronics, with the
aim of realizing favorable devices for future application
based on the spin degree of freedom, has attracted much
attention.1–5 One of the most critical challenges for such de-
vices lies in the control of the spin lifetime, which is limited
by the unavoidable spin relaxation and/or dephasing process
in semiconductors. In this sense, understanding of the carrier
spin relaxations and/or dephasings is a critical issue.3–7 In
bulk materials, the spin relaxation and/or dephasing proper-
ties of the electrons and the underlying physics have been
well understood after a long-time research.8–17 However, the
study on hole spin dynamics, which occurs on the time scale
of the momentum scattering time �usually �1 ps�, is fairly
rare, partly because of the limited resolution on the detection
of such an ultrafast process. The hole spin lifetime in bulk
semiconductors was only measured in intrinsic GaAs at
room temperature, which evaluated the spin relaxation time
of the heavy hole ��110 fs�.18

One picture to explain the picosecond hole spin relaxation
�HSR� time is the D’yakonov-Perel’ �DP�-type description
associated with the momentum scattering and the spin pre-
cession between the light hole �LH� and heavy hole �HH�.19

However, this picture works only if the broadening of the
energy spectrum due to scattering is larger than the interband
splitting, corresponding to the vicinity of the zone center.
Otherwise, holes are driven to large momentum states where
the degeneracy between the LH and HH bands is signifi-

cantly lifted, hence it is more appropriate to treat the LH and
HH bands separately. The HSR of the individual LH and HH
bands was studied by Yu et al.,20 who obtained the accurate
band structure from the tight-binding Hamiltonian with the
spin-orbit coupling �SOC� and calculated the spin relaxation
time of the LH �HH� as the inversion of the decay rate of the
quasispin polarization, that is, the population difference of
the LH �HH� between the two quasispin bands. The Elliott-
Yafet �EY� mechanism,21 there described as the direct
quasispin-flip scattering, was claimed to be the solo mecha-
nism for the HH and the dominant one for the LH while the
DP mechanism22 treated as the intraband precession together
with the quasispin-conserving scattering from the motional
narrowing relation was found to be unimportant. Since the
calculation was based on the single-particle theory, the Cou-
lomb interaction which has been demonstrated to result in
intriguing many-body effects during electron-spin
dynamics5,23–25 was missed in that work. Moreover, the HSR
time was extracted from the quasispin polarization instead of
the exact spin signal. The feasibility of this approach needs
to be verified. In other words, the results obtained there is not
exactly the HSR time but the quasispin relaxation time. Re-
cently, the hole spin dynamics in intrinsic bulk GaAs with
the Coulomb interaction was microscopically investigated
from an eight-band Kane Hamiltonian by Krauß et al.,26

where the HSR time, directly from the decay of the hole spin
expectation, was shown to be quite close to the experimental
result. It was also shown that the HSR time can be slightly
different from the quasispin relaxation time. Thus, it seems
that ultrafast HSR in bulk zinc-blende semiconductors has
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been successfully interpreted theoretically. However, one
may notice that the intraband coherence, i.e., the nondiago-
nal components of the density matrices was missing in that
work, which actually will lead to two consequences: the ex-
aggeration of the EY mechanism and the exclusion of the DP
mechanism. Moreover, the nonpolar interaction of holes with
transverse- and longitudinal-optical phonons due to the de-
formation potential coupling, which was shown to produce a
significant contribution on the charge dynamics of holes,27–29

was not included. In this sense, the results in Ref. 26 should
be reexamined.

In the present work, we employ the fully microscopic
kinetic spin Bloch equations �KSBEs� �Refs. 5, 14, 23, 30,
and 31� to investigate the HSR due to the EY and DP mecha-
nisms in intrinsic and p-type bulk GaAs. The EY mechanism
here corresponds to the decay of the spin polarization solely
due to the scattering associated with the interband mixing,
between not only the HH and LH bands but also the conduc-
tion and valence bands; whereas the DP mechanism stands
for the additional contribution by including the intraband
spin precessions. We first analytically derive the valence-
band structure from the four-band Luttinger Hamiltonian32

together with the Dresselhaus SOC �Ref. 33� due to the bulk
inversion asymmetry in zinc-blende semiconductors. We
demonstrate that the Dresselhaus SOC induces an intraband
splitting between the two HH bands as well as the two LH
bands with cubic wave-vector dependence, which supplies
an additional HSR channel due to the DP mechanism. We
find that the intraband splitting of the HH bands vanishes
under the spherical approximation of the Luttinger Hamil-
tonian, and then the DP mechanism becomes irrelevant to the
HH spin relaxation.20 This implies the limitation of such an
approximation in calculating the HSR time. Therefore, we
later obtain the intraband splitting and wave functions by
diagonalizing the full eight-band k ·p Hamiltonian beyond
the spherical approximation. Then we calculate the HSR
time from the KSBEs with the intraband coherence and all
the relevant scatterings, such as the hole-impurity, hole-hole,
hole-electron, hole-acoustic-phonon, and polar and nonpolar
hole-optical-phonon scatterings, explicitly included. In the
intrinsic case at room temperature, the HSR is dominated by
the EY mechanism and the HSR time shows good agreement
with the experiment. We find that the HSR time can be sig-
nificantly manipulated by changing the temperature and ex-
citation density. In the p-type materials, we predict intriguing
nonmonotonic behaviors of the HSR time in both the density
and temperature dependences. We show that the nonmono-
tonic features reflect the role of the screening. Moreover, we
find that the EY mechanism is usually the major mechanism
of the HSR but the DP mechanism can still be comparable
with the EY mechanism in some special cases, such as the
high-density regime at low temperature and the low-density
regime at moderate temperature.

This paper is organized as follows. In Sec. II, we set up
our model and derive the effective Dresselhaus field from the
Luttinger Hamiltonian. The KSBEs are also constructed in
this section. In Sec. III, we investigate the HSR in both in-
trinsic and p-type GaAs. The comparison of the calculations
with and without the intraband coherences is given in this
section to illustrate the role of the intraband coherence. The

relative contributions of the DP and EY mechanisms are also
discussed. Finally, we summarize in Sec. IV.

II. MODEL AND KSBE

To qualitatively analyze the band structure and the intra-
band splitting of the HH and LH bands, we start from the
perturbation method with the 4�4 Hamiltonian �in the basis
of the eigenstates of Jz with eigenvalues 3

2 , 1
2 , − 1

2 , and − 3
2 , in

sequence� near the center of the Brillouin zone

H8v8v =�
F H I 0

H� G 0 I

I� 0 G − H

0 I� − H� F
� + H8v8v

b . �1�

The first term on the right-hand side of the equation is the
Luttinger Hamiltonian,32 where F=− �2

2m0
���1+�2��kx

2+ky
2�

+ ��1−2�2�kz
2�, G=− �2

2m0
���1−�2��kx

2+ky
2�+ ��1+2�2�kz

2�, H

=2�3 �2

2m0
�3�kx− iky�kz, and I= �2

2m0
��3�2�kx

2−ky
2�− i2�3�3kxky�.

�i are Kohn-Luttinger parameters. We denote this term as H0
in the following. The second term is the Dresselhaus SOC of
the valence band, H8v8v

b =hk ·J, with the effective magnetic
field33,34

hk = b41
8v8v�kx�ky

2 − kz
2�,ky�kz

2 − kx
2�,kz�kx

2 − ky
2�� . �2�

Ji represent the spin-3/2 angular momentum matrices. It is
obvious that the band structure is mainly determined by H0
in the vicinity of the zone center. The energy spectrum from
H0 reads35,36

Eh/l,k = −
�2

2m0
	�1k2 � �4�2

2k4 + 12��3
2 − �2

2�

� �kx
2ky

2 + ky
2kz

2 + kz
2kx

2��1/2
 �3�

and the wave functions can be expressed by

�1
h/l = �a1

h/l,b1
h/l,c1

h/l,0�T, �4�

�2
h/l = �0,c2

h/l,b2
h/l,a2

h/l�T. �5�

By identifying �1
h/l and �2

h/l as pseudospin-up and -down
states separately, one obtains the effective magnetic field of
the Dresselhaus SOC ��h/l

e � between them. Specifically, one
rewrites H8v8v in the representation of 	�i

h/l
, and derives
individual HH and LH blocks from the Löwdin partitioning
method37 up to the cubic power of the wave vector,

Hh/l�k� = Eh/l,kI2�2 + �h/l
e �k� · � , �6�

where � are the Pauli matrices. The expressions of the ef-
fective magnetic field together with the coefficients ai

h/l, bi
h/l,

and ci
h/l are given in Appendix A. The presence of the intra-

band splitting �Eh/l,k=Eh/l,k
2 −Eh/l,k

1 =2��h/l
e �k�� obviously in-

dicates that the DP mechanism can contribute to the HSR in
the presence of the scatterings.5,22 Interestingly, one finds �h

e

vanishes once the spherical approximation �corresponding to
�2=�3� �Refs. 38 and 39� is applied, which means that the
contribution of the DP mechanism to the HH spin relaxation
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is lost within the spherical approximation scheme. In other
words, the difference between �2 and �3, arising from the
remote bands,34 is important in counting the HH spin relax-
ation.

We should point out that the above perturbation approach
gives the precise value of the intraband splitting only in the
vicinity of the zone center. For the regime far away from the
center, the modification from the split-off and conduction
bands should be considered. Therefore, the intraband split-
tings �Eh/l,k are obtained from the diagonalization of the 8
�8 Kane Hamiltonian HK �Ref. 40� in our numerical calcu-
lation, that is, by solving the Schrödinger equation

HK�k��	h/l,k
i � = Eh/l,k

i �	h/l,k
i � �7�

with i=1,2. We define the single-particle density matrices 
k
h

as 4�4 matrices in the helix representation,41 i.e., under the
basis of the eigenstates 	�	h,k

1 � , �	h,k
2 � , �	l,k

1 � , �	l,k
2 �
. The unitary

transformation from the helix representation to the collinear
representation, the basis of which is defined as the eigen-
states of the angular momentum operator Jz, is given by


k
c = Uk
k

hUk
† �8�

with Uk= �	h,k
1 ,	h,k

2 ,	l,k
1 ,	l,k

2 �. The KSBEs in the helix repre-
sentation from the nonequilibrium Green’s-function method
reads5,23

�t
k
h = �t
k

h�coh + �t
k
h�scat. �9�

The coherent term can be written as

�t
k
h�coh = − i�

q
VqSk,k−q
k−q

h Sk−q,k,
k
h� − i�Hh�k�,
k

h�

�10�

with �,� representing the commutator. Sk�,k=Uk�
† Uk. The first

term on the right-hand side of the equation comes from the
Coulomb Hartree-Fock contribution, which can be neglected
for small spin polarization.5 In the helix frame, Hh�k�
=diag�Eh,k

1 ,Eh,k
2 ,El,k

1 ,El,k
2 � and Eq. �10� then can be rewritten

as �t
k
h�m ,n� �coh=−i
k

h�m ,n��Em,k−En,k�. The scattering term
is given by41

�t
k
h�scat = − �ni �

q���

�Uq
i �2�E��k−q − E�k�Sk,k−q

� �
k−q
h,�Tk−q

�� Sk−q,kTk
�
k

h,� − 
k−q
h,�Tk−q

�� Sk−q,kTk
�
k

h,��

− � �
q����

�Mq,��2�E��k−q − E�k � �q��Sk,k−q

� �Nq,�
� 
k−q

h,�Tk−q
�� Sk−q,kTk

�
�k
h,�

− Nq,�
� 
k−q

h,�Tk−q
�� Sk−q,kTk

�
k
h,�� − ��

q��

Vq
2

� �Q�q,E�k − E��k−q�Sk,k−q
k−q
h,�Tk−q

�� Sk−q,kTk
�
k

h,�

− Q�− q,E��k−q − E�k�Sk,k−q
k−q
h,�Tk−q

�� Sk−q,kTk
�
k

h,��

+ H.c., �11�

where 
k
h,�=
k

h and 
k
h,�=1−
k

h. Tk
��m ,n�=m,�n,�. The

hole-impurity scattering matrix element �Uq
i �2=Z2Vq

2 with Z

taken to be 1 in the calculation. Vq=e2 / ��0�q2+�2��. �0 de-
notes the static dielectric constant. Here, the screening con-
stant � is calculated from the random-phase approximation
�RPA�.39 The detail of the polar carrier-longitudinal-optical-
phonon and carrier-acoustic-phonon scattering elements
�Mq,��2 can be found in Refs. 24 and 42. Besides, the
longitudinal- and transverse-optical modes can also contrib-
ute to the nonpolar hole-optical-phonon scattering. The ma-
trix elements of these scatterings are given27 by Mq,�

nonp

= � �

2D�q,�
�1/2D̄q,�, where D in the square root represents the

crystal density. The potential matrix D̄q,� is given in Appen-

dix B. Nq,�
� = �exp��q,� /kBT�−1�−1+ 1

2 �
1
2 . The function Q in

the Coulomb scattering term reads

Q�q,w� = �
���k�

�E�k� − E��k�−q − w�

� Tr�Sk�−q,k�
k�
h,�Tk�

� Sk�,k�−qTk�−q
�� 
k�−q

h,� �

+ �
k�

�Eek� − Eek�−q − w�Tr�
e,k�
�


e,k�−q
� � .

�12�

The second term on the right-hand side of the above equation
describes the contribution of the hole-electron scattering with

e,k representing the electron-density matrices.

III. NUMERICAL RESULTS

In this section, we present our results in bulk GaAs with
the measured value of the optical deformation potential d0
=48 eV.28,43 The other parameters14 in our computation are
all taken from Ref. 44. By numerically diagonalizing the 8
�8 Kane Hamiltonian, one obtains the energy spectra of the
valence bands. The results along the �110� direction are plot-
ted in Fig. 1�a�, where the HH, LH, and split-off bands all
present intraband splittings. One notices that both the HH
and LH bands are approximately parabolic within 0.15 eV
from the valence-band top, which indicates the feasibility of
the effective-mass approximation. Moreover, the splitting be-
tween the HH and LH bands are tens of millielectron volt
even for the Fermi energy smaller than 10 meV, correspond-
ing to nh�3�1016 cm−3 at 0 K. Therefore, we neglect the
interband coherence between the HH and LH bands and re-
duce the 4�4 hole density matrices into the LH and HH
blocks, both are 2�2 matrices, in our computation.45 In Fig.
1�b�, we illustrate the intraband splittings of the three va-
lence bands, i.e., �E�,k=E�,k

2 −E�,k
1 , from the 8�8 Kane

Hamiltonian along the �110� direction as solid curves. Here,
E�

2 �E�
1� is the larger �smaller� eigenvalue of the � band with

� corresponding to the HH, LH, and split-off bands. One can
see that the splitting of the HH band is much smaller than
that of the LH band. This can be understood as follows:
within the spherical approximation, the LH band itself pre-
sents an intraband splitting due to the Dresselhaus SOC
while the HH band is still doubly degenerate as mentioned in
Sec. II. However, the anisotropy property of the valence
band makes the HH states contain some LH components so
as to lift the degeneracy of the HH band. In other words, the
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SOC induces the splitting of the HH band indirectly, hence
the magnitude is smaller than the direct splitting of the LH
band. For comparison, we also plot the intraband splittings
from the perturbation approach up to the order of k3 based on
the 4�4 Luttinger Hamiltonian in Fig. 1�b� as dashed
curves. One can see that the perturbation approach only per-
forms well for k�0.16� /a. For larger wave vectors, the cu-
bic wave-vector dependence of the intraband splitting is vio-
lated due to the interband coupling. The intraband splittings
of the HH and LH bands are plotted as function of the direc-
tion of the wave vector in Figs. 1�c� and 1�d�, respectively,
from which the anisotropy properties can be clearly seen.

Since the intraband splitting is much smaller in the den-
sity and temperature regimes studied in the present work
compared to the Fermi energy, one can neglect the intraband
splitting in the  function in Eqs. �11� and �12�.41 For the
numerical treatment of the scattering term, we take the iso-
tropic energy spectrum from the effective-mass approxima-
tion,

Eh/l,k
1 � Eh/l,k

2 � Eh/l,k = − �2

2m0
��1 � �̄�k2

with �̄= ��2+�3� /2.14,39 The feasibility of this widely
adopted approximation has been shown in the literature.46–48

Moreover, we find that the density of states from this ap-
proximation is almost the same as that obtained from the
anisotropic spectrum. The average momentum scattering
time in this scheme is also comparable to that from the real
band structure.

A. HSR in intrinsic GaAs

In this part, we investigate the HSR in intrinsic case. Our
discussion is based on two physical quantities, i.e., the qua-
sispin polarization and the spin polarization. The former de-
scribes the population difference between the two HH and
LH quasispin bands, defined as

Pp = �
�k

�
�k
h �1,1� − 
�k

h �2,2��/nh �13�

with nh being the hole density. The latter is calculated as the
spin polarization along the �001� direction

Ps = �
�k

Tr�
�k
c Jz�/nh, �14�

which reflects the optical orientation signal in experiment.
In our computation, we take the initial state from the op-

tical orientation due to the pump pulse with the small polar-
ization Popt= �I+− I−� / �I++ I−�=2%,49 where I+ and I− are the
intensities of the �+- and �−-polarized light. In that case, one
sets the electron-density matrices as the Fermi distribution
with the spin polarization 1% at the lattice temperature and
keeps it unchanged, by taking into account of the fact that
the electron-spin �momentum� relaxation time is much
longer �shorter� than the time scale of the HSR. The initial
hole density matrices are also set to obey the Fermi distribu-
tion in the collinear spin space to describe the optically ex-
cited condition. By solving the KSBEs, one obtains the tem-
poral evolution of the spin polarization Ps �quasispin one
Pp�, from which the spin �quasispin� relaxation time is
extracted.

We first take the hole density nh=1017 cm−3. Figure 2
illustrates the temporal evolution of the spin polarization
�normalized by the value at t=0� from the full calculation at
room temperature as the red solid curve �labeled as “full”�.
One can see that the spin polarization decays exponentially
with the HSR time �tot�0.11 ps, which agrees perfectly
well with the experimental value of the HSR time,
0.11�10% ps.18 By removing the coherent term from the
KSBEs, one switches off the DP mechanism and obtains the
results solely due to the EY mechanism as the blue solid
curve. The HSR time �EY in this case is about 0.13 ps. Since
the EY mechanism is irrelevant to the spin precession, from
�tot

−1=�EY
−1 +�DP

−1 , one extracts the spin lifetime due to the DP
mechanism �DP�0.72 ps, which is much longer than that of
the EY mechanism. Therefore, the EY mechanism is domi-
nant in this case. Moreover, we find that the relaxation time
of the quasispin polarization �red dashed curve labeled with
full� is very close to that of the spin polarization.

FIG. 1. �Color online� �a� Energy spectra and �b� intraband split-
tings of the valence bands �solid curves� along the �110� direction
from the diagonalization of the 8�8 Kane Hamiltonian. The
dashed curves in �b� show the results from the 4�4 Luttinger
Hamiltonian. a is the lattice constant. �c� and �d� show the intraband
splittings of the HH and LH bands at �k�=0.1� /a as function of the
wave direction �� ,��.
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In the figure, we also plot the results from the calculation
without the intraband coherence as orange curves �labeled as
“incoherent”�, where the nondiagonal elements 
�k�1,2� are
artificially set to be zero during the calculation as done in
Ref. 26. Compared with the results labeled with “EY,” one
immediately finds that this procedure markedly exaggerates
the contribution of the EY mechanism �The DP mechanism
vanishes in this scheme obviously�, which clearly shows the
problem of the missing of the intraband coherence. The rea-
son lies in the fact that the spin-conserving scattering be-
comes the spin-flip one once the nondiagonal elements of the
density matrices in helix representation are neglected.41 In
Ref. 26, the authors argued the disregarding of the intraband
coherence by arguing that the optically driven coherence be-
tween single-particle states would be very small and the SOC
could not drive any coherence further during the time evolu-
tion of the density matrices in the helix representation �i.e.,
under the basis called “intelligent basis” there�. However,
this is actually incorrect. Since the SOC information is trans-
ferred into the wave functions of the eigenstates in the helix
representation, any spin-conserving scattering events can in-
duce the intraband and/or interband coherence.41 Therefore,
the same HSR time is obtained if one chooses the helix ini-
tial condition, corresponding to the initialization without any
nondiagonal elements of the density matrices at t=0. In the
remaining part of this paper, all the results are obtained from
the calculation including the intraband coherence.

The green curves �labeled as “without NPHOP”� in Fig. 2
obtained from the calculation without the nonpolar hole-
optical-phonon scattering give the HSR time around 0.17 ps,
much longer than that from the full calculation. This clearly
shows the importance of the nonpolar hole-optical-phonon

scattering in the HSR. It is noted that this scattering is also
missed in Ref. 26. For comparison, we further plot the spin
polarization from the calculation without the nonpolar hole-
optical-phonon scattering and the intraband coherence as
black dotted curve, which corresponds to the calculation
scheme in Ref. 26. It is seen that the missed terms have
marked contribution to the HSR.

Since the direct relation between the EY mechanism and
the scattering strength, the HSR time due to the EY mecha-
nism decreases �increases� when the scattering becomes
stronger �weaker�. To show the influence of the scattering
more clearly, we vary the density and temperature. The den-
sity dependence of the HSR time is plotted in Fig. 3. One can
see that the HSR time at room temperature monotonically
decreases with increasing photoexcitation density. Since the
electrons and holes are both in the nondegenerate regime, the
Coulomb scattering rate becomes larger as the density in-
creases, according to the estimation of the average Coulomb
scattering rate ��p

C�−1�nh /T3/2.50 As a result, the HSR time
decreases. One can also see that the HSR time markedly
increases with decreasing temperature due to the suppression
of the hole-phonon scattering.

More interestingly, we predict a valley in the density de-
pendence of the HSR time at low temperature. The minimum
occurs at nh=ne=4�1016 cm−3 �corresponding to the Fermi
temperatures TF

e =74 K for electrons and TF
h =9 K for holes�

at T=50 K and nh=ne=2�1017 cm−3 �TF
e =216 K and TF

h

=27 K� at T=100 K. The agreement between TF
e at the val-

ley and the lattice temperature T reveals that the valley re-
sults from the different density dependence of the hole-
electron scattering in the degenerate and nondegenerate
limits. As mentioned above, the HSR time decreases with
increasing density in the nondegenerate limit. However, for
high densities, electrons first enter into the degenerate re-
gime. Therefore the hole-electron scattering strength is sig-
nificantly decreased due to the Pauli blocking of electrons.
As a result, the HSR time due to the EY mechanism in-
creases in this regime, and finally results in the valley at the
crossover between the degenerate and nondegenerate re-

FIG. 2. �Color online� Temporal evolution of the normalized
quasispin polarization �dashed curves� and spin polarization �solid
ones� at room temperature with the hole density nh=1017 cm−3 in
intrinsic GaAs. The curves labeled as full �incoherent� are obtained
from the full calculation with �without� the intraband coherence
while the ones with EY show the results without the intraband
precession term, corresponding to the contribution from the EY
mechanism. The results from the calculation including the intraband
coherence but without the nonpolar hole-optical-phonon scattering
are plotted as the curves denoted as without NPHOP. The dotted
curve represents the spin polarization from the calculation scheme
used in Ref. 26, i.e., without the nonpolar hole-optical-phonon scat-
tering and intraband coherence. The relaxation times are given
correspondingly.

FIG. 3. �Color online� HSR time from the full calculation as
function of the hole density nh in intrinsic GaAs. The result from
the calculation without the hole-electron scattering at 50 K is la-
beled as “without h-e.” The dot represents the experiment data at
room temperature with the photoexcitation density nh=1017 cm−3

�Ref. 18�. In the calculation, the electron density ne=nh.
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gimes of electrons. In the figure, we also plot the result from
the calculation without the hole-electron scattering at 50 K.
It is clear to see that the valley at nh=ne=4�1016 cm−3

disappears, as expected. Instead, one finds that another valley
shows up at nh=ne=2�1017 cm−3, where TF

h �27 K� is com-
parable to the lattice temperature T �50 K�. This means that
holes also enter the degenerate regime at such a high density
and the hole-hole scattering rate is then given by ��p

C�−1

�T2 /nh
2/3.50 Therefore, the HSR time increases with increas-

ing the density for nh=ne�2�1017 cm−3. One notices that
the Coulomb scattering can also induce a peak �instead of
valley� in the density dependence of the electron-spin relax-
ation time limited by the DP mechanism, first predicted by
Jiang and Wu14 and realized experimentally by Krauß et
al.16,17

B. HSR in p-type GaAs

In this part, we study the HSR in p-type GaAs. We still
apply the collinear initial spin polarization Ps=2%. As the
photoexcited carrier density is much smaller compared to the
doping density, we take nh=ni and neglect the hole-electron
scattering in the computation.

1. Density dependence

We start from the density dependence of the HSR time.
The results from the full calculation are plotted in Fig. 4�a�,
which shows rich and intriguing nonmonotonic features. At
low temperature, e.g., at 5 K, the HSR time first increases
and then decreases with increasing hole density. As a result,
a peak appears at nh=4�1016 cm−3, where the correspond-
ing Fermi temperature TF

h =9 K is comparable to the lattice
temperature. As the temperature increases, the peak moves to
the higher density regime �nh=3�1017 cm−3 with TF

h

=35 K for 20 K and nh=1018 cm−3 with TF
h =79 K for 50

K�. Simultaneously, a valley gradually appears in the low-
density regime. Although the peak also locates at the cross-
over between the degenerate and nondegenerate regimes, the
underlying physics of the peak is again different from the
one in the electron-spin relaxation time in intrinsic and
n-type materials.14 To explain the presence of the peak, we
turn to analyze the change in the scattering strength. Since
the intraband splitting is too small to affect the HSR for the
hole states near the zone center, the HSR process is mainly
determined by the EY mechanism instead of the DP mecha-
nism for low-density case, especially at low temperature.

As a qualitative analysis for the case ni=nh, one can focus
on the major scattering mechanism, i.e., the hole-impurity
scattering with the strength estimated by ��p

hi�−1

�meffnh�kVq
2� / �8�2�3��nh�k�q2+�2�−2�, where k comes

from the density of states and �¯ � stands for the average
over the distribution. meff represents the effective mass and q
is the momentum exchange. In the degenerate regime, only
holes on the Fermi surface contribute to the HSR, therefore,
one can estimate k�kF and q2�2kF

2 with kF representing the
Fermi wave vector. Thus, one has

�p
hi � �2 + ��/kF�2�2. �15�

Figure 4�b� shows the ratio of the RPA screening constant �
to kF. One finds that � /kF decreases with increasing density

in the high-density regime and �s��p
hi decreases also. The

density dependence of � /kF can be easily understood once
the Thomas-Fermi screening ���nh

1/6� is applied in the de-
generate limit,51 which leads to � /kF�nh

−1/6.
However, the situation is quite different in the nondegen-

erate regime. In this limit, one has ��nh
1/2T−1/2 according to

the Debye-Hückel screening51 and q�k�T1/2. For ��q,
one neglects the q2 term in �p

hi and obtains

�p
hi � �nh�k�−4��−1 � nhT−5/2, �16�

which indicates that the HSR time increases with increasing
density in this case. For ��q, the screening constant is ne-
glected and �p

hi can be written as

�p
hi � �nh�kq−4��−1 � nh

−1T3/2, �17�

which decreases with increasing density. In Fig. 4�a�, we also
plot the density dependence of �p

hi at 20 K �the dotted curve
without symbol�, which agrees well with our discussion. It is
clear to see that �p

hi is in the same order of magnitude as the
HSR time �s as expected.

Now, the peak and valley in the HSR time in Fig. 4�a� can
be well understood. For example, at 20 K, holes lie in the
nondegenerate regime and the screening constant is small in
the low-density regime. As the density increases, the HSR
time decreases according to Eq. �17�. Nevertheless, with fur-
ther increase in the density, � can be larger than q. Then the

FIG. 4. �Color online� �a� HSR time from the full calculation as
function of the hole density nh in p-type GaAs. We take the impu-
rity density ni=nh. The hole-impurity scattering time �p

hi at 20 K is
plotted as the black dotted curve without symbol. �b� The ratio of
the screening constant to the Fermi wave vector, � /kF, as function
of the hole density. The solid line illustrates the level �=�2kF.
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HSR time increases with density according to Eq. �16�. By
further increasing density, the system enters into the degen-
erate regime and the HSR time decreases again following
Eq. �15�. By comparing Figs. 4�a� and 4�b�, we find the
crossover between Eqs. �16� and �17� can still be qualita-
tively estimated by taking q2�2kF

2 . At low temperature �5
K�, the screening constant is always large in the nondegen-
erate regime of our investigation �see Fig. 4�b��, so the valley
is invisible in Fig. 4�a�. However, at high temperature �200
K�, the screening is weak in both the degenerate and nonde-
generate regimes and the HSR time monotonically decreases
with increasing density.

To elucidate the role of the screening more clearly, we
plot the results from different screenings at 20 K in Fig. 5�a�.
The green dotted and blue dashed curves correspond to the
results with the Thomas-Fermi and Debye-Hückel screen-
ings, respectively. The total HSR time from the RPA screen-
ing is also plotted as the red solid curve. One can see that the
result from the RPA screening is consistent with that from
the Thomas-Fermi �Debye-Hückel� screening in the high-
�low-� density regime and the peak in the density dependence
exactly occurs at the crossover between the degenerate and
nondegenerate regimes.

In contrast, electrons in most n-type zinc-blende materials
are easier to enter into the degenerate regime and the screen-
ing constant is usually small �� /kF��2� thanks to the small
effective mass of the conduction band. Therefore, it is diffi-

cult to observe the nonmonotonic effect of the screening dur-
ing the electron-spin relaxation. However, Jiang and Wu sug-
gested that the screening from the holes in p-type materials
can also give rise to observable effects on the electron-spin
relaxation.14 In that case, the EY mechanism is always irrel-
evant and the electron-spin relaxation is dominated by the
DP mechanism in the low hole density regime. Since the spin
relaxation time due to the DP mechanism is inversely pro-
portional to the momentum scattering time in the strong scat-
tering limit, the hole density dependence of the electron-spin
relaxation time there is opposite to that of the HSR time we
predict here. Specifically, they found that the electron-spin
relaxation time due to the DP mechanism first increases and
then decreases as the hole density increases in the nondegen-
erate regime. After the holes enter into the degenerate re-
gime, the electron-spin relaxation time increases again.

From previous discussion, one notices that the HSR prop-
erties can be well interpreted by the EY mechanism which
suggests that the EY mechanism is generally more important
than the DP one. This can be clearly seen from Fig. 5�b�,
where the HSR times due to the EY and DP mechanisms are
separately plotted. Interestingly, we find that the contribution
of the DP mechanism can be comparable to that of the EY
mechanism in high doping regime. To explain this behavior,
we employ the relation in the strong scattering limit, �DP
�1 / �����2−�z

2��p
hi� with ����2−�z

2� representing the en-
semble average of the effective magnetic field �inhomoge-
neous broadening23�. In the low-density regime, the hole gas
is in the nondegenerate limit and the inhomogeneous broad-
ening is small and insensitive to the density. Hence the con-
tribution of the DP mechanism to the HSR is negligible.
However, holes are in the degenerate limit for high-density
case and the inhomogeneous broadening increases rapidly
��kF

6 , see Eq. �6� also� with increasing hole density, which
makes the DP mechanism markedly contribute to the HSR.
By using Eq. �15�, one can easily obtain �DP /�EY�nh

−2/3 for
� /kF��2 and �DP /�EY�nh

−2 for � /kF��2. It is obvious that
�DP /�EY decreases with increasing density in both cases.

2. Temperature dependence

Similarly, one also finds the nonmonotonic temperature
dependence of the HSR time. In Fig. 6�a�, we plot the results
of four typical densities nh=1015, 1016, 1018, and 4
�1019 cm−3. One notices that the temperature dependence
of the HSR time is also qualitatively determined by the EY
mechanism �curves with solid symbols�. The HSR time from
this mechanism first decreases and then increases with in-
creasing temperature for nh=1016 cm−3, and the minimum
reaches around 15 K. Since the hole-phonon scattering is
rather weak in this regime, this feature just reflects the im-
portant role of the screening in the hole-impurity scattering.
Figure 6�b� illustrates the ratio of the screening constant to
the Fermi wave vector, where the crossover ����2kF� oc-
curs just around 15 K. Since holes are always nondegenerate
in this case �even at 5 K, see Fig. 4�, the HSR time decreases
�increases� with increasing temperature below �above� 15 K,
according to Eq. �16� �Eq. �17��. Moreover, we find that the
HSR time decreases again when the temperature further in-
creases because of the enhancement of the hole-phonon scat-

FIG. 5. �Color online� �a� Density dependence of the total HSR
time in p-type GaAs at 20 K. In the calculation, the RPA �red solid
curve�, Thomas-Fermi �green dotted curve�, and Debye-Hückel
�blue dashed curve� screenings are applied. �b� HSR times due to
the EY mechanism �curves with solid symbols� and the DP mecha-
nism �curves with open symbols� as function of the hole density.
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tering. To demonstrate this picture, we remove the hole-
phonon scattering from the KSBEs and find that the HSR
time due to the EY mechanism monotonically increases
above 15 K, as expected �shown as dotted curve without
symbol�. For nh=1015 cm−3, only the peak is visible while
the valley is absent as the curve with solid squares shown.
The reason is that the screening is weak for this density �see
Fig. 6�b��. However, for nh=1018 and 4�1019 cm−3, holes
are in the degenerate regime at low temperature, hence the
temperature dependence of the HSR time is determined by
� /kF from Eq. �15�. At high-temperature regime, the HSR
time is also limited by the hole-phonon scattering for these
densities. Another important information one can get from
Fig. 6�a� is that the HSR time due to the DP mechanism is
comparable to the one due to the EY mechanism around 80
K for nh=1015 cm−3. For the high doping case with nh=4
�1019 cm−3, the important role of the DP mechanism at low
temperature can also be clearly seen �see also Fig. 5�b��.

3. Relative contribution of the DP and EY mechanisms

For thorough understanding of the relative contribution of
the DP and EY mechanisms, we plot the ratio of the HSR
times due to the EY and DP mechanisms �EY /�DP as function
of the density and temperature in Fig. 7. It is clear to see that
the HSR time is dominated by the EY mechanism at low
temperature �below 40 K� up to 1019 cm−3. This is because

that holes mainly occupy the states with small wave vectors
and experience a small effective Dresselhaus field. In the
high-density regime, the increase in the inhomogeneous
broadening makes the DP contribution significantly en-
hanced and even comparable to the EY one as discussed
above. Another interesting regime lies in the low-density re-
gime at moderate temperature, where the contribution of the
DP mechanism can also be comparable to that of the EY
mechanism. This originates from the reduction in the EY
contribution due to the relatively weak hole-impurity scatter-
ing according to Eq. �17� �see Fig. 6�a� also�. However, this
effect is suppressed by the hole-phonon scattering at higher
temperature, where the EY mechanism again is more effi-
cient than the DP one. In the figure, we also plot the borders
with �EY /�DP=1 /3 as yellow dashed curves.

Finally, we should point out that the Bir-Aronov-Pikus
mechanism52 is neglected in our computation even in the
intrinsic case. The reason lies in the fact that the spin-flip
process due to the electron-hole exchange interaction in in-
trinsic GaAs occurs in the time scale of nanosecond,14 there-
fore this mechanism is irrelevant to the ultrafast spin relax-
ation of the hole system.

IV. CONCLUSION

In conclusion, we have investigated the HSR from the
fully microscopic KSBEs in intrinsic and p-type bulk GaAs.
We analyze the valence-band structure by considering the
anisotropic property and the Dresselhaus spin-orbit coupling.
We find that the degeneracy of the HH band and that of the
LH band are both lifted by intraband splittings. The DP
mechanism associated with the intraband precessions and the
EY mechanism due to the direct spin-flip scattering are then
explicitly studied, with the intraband coherence included.
Our result of intrinsic GaAs shows good agreement with the
experiment data at room temperature, where the EY mecha-
nism is demonstrated to be the dominant spin-relaxation
mechanism due to the strong scattering process. We also
show that the approach without the intraband coherence used
in the literature is inadequate in accounting for the HSR and
the nonpolar hole-optical phonon, missed in the previous the-
oretical work, is important to the HSR. The temperature can

FIG. 6. �Color online� �a� HSR times due to the EY �curves with
solid symbols� and DP �curves with open symbols� mechanisms as
function of the temperature in p-type GaAs with ni=nh. The result
without the hole-phonon scattering at nh=1016 cm−3 is plotted as
dotted curve without symbol. �b� The ratio of the screening constant
to the Fermi wave vector as function of the temperature. The level
�=�2kF is illustrated by a solid line.

FIG. 7. �Color online� Ratio of the HSR time due to the EY
mechanism to that due to the DP mechanism, �EY /�DP, as function
of the doping density and temperature in p-type GaAs with ni=nh.
The yellow dashed curves represent the borders with �EY /�DP

=1 /3.
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markedly affect the HSR time by changing the strength of
the hole-phonon scattering. At low temperature, we predict a
valley due to the Coulomb scattering in the HSR time at the
crossover between the degenerate and the nondegenerate re-
gimes of the electrons. In p-type GaAs, we find that the HSR
time depends on density and temperature nonmonotonically.
For the density dependence, the HSR time presents a peak at
the crossover between the degenerate and nondegenerate re-
gimes of the holes, resulting from the different features of
the screening in the degenerate and nondegenerate limits. In
the nondegenerate regime, we predict a valley, from the com-
petition between the screening constant and the momentum
exchange, in the density dependence of the HSR time. We
also find that the HSR time monotonically decreases with
increasing density at high temperature, thanks to the small
screening constant. For the temperature dependence, we pre-
dict a valley in the low-temperature regime, which also re-
flects the role of the screening. In the high-temperature re-
gime, the hole-phonon scattering can markedly contribute to
the HSR and make the HSR time decrease with increasing
temperature. Moreover, we find that the contribution of the
DP mechanism can be comparable with that of the EY one in
the high-density regime at low temperature and in the low-
density regime at moderate temperature, even though the EY
mechanism is usually the major mechanism in the HSR.
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APPENDIX A: DETAIL OF INTRABAND SPLITTING

The coefficients in Eq. �4� can be expressed as

a1
h/l = �Eh/l − G�/��Eh/l − G�2 + �H�2 + �I�2�1/2, �A1�

b1
h/l = H�/��Eh/l − G�2 + �H�2 + �I�2�1/2, �A2�

c1
h/l = I�/��Eh/l − G�2 + �H�2 + �I�2�1/2, �A3�

and those in Eq. �5� are given by a2
h/l=a1

h/l, b2
h/l=−�b1

h/l��, and
c2

h/l= �c1
h/l��.

The effective magnetic field in Eq. �6� can be written as

�x
e = hx Re��3a2c2 − b2

2 + c2
2� − hz Re�b2c2�

+ hy Im��3a2c2 − b2
2 − c2

2� , �A4�

�y
e = − hx Im��3a2c2 − b2

2 + c2
2� + hz Im�b2c2�

+ hy Re��3a2c2 − b2
2 − c2

2� , �A5�

�z
e = hx Re��3a2b1 + 2b1c2� + hy Im��3a1b1 − 2b2c1�

+ hz�3a1
2 + �b1�2 − �c1�2�/2, �A6�

where the labels “h / l” are neglected for short.

APPENDIX B: DEFORMATION POTENTIAL MATRIX OF
OPTICAL PHONONS

The 6�6 deformation potential matrix of optical phonons
for valence bands reads27

D̄�q =
d0

a
�T�q P�q

†

P�q 02�2
� �B1�

with

T�q =�
0 �

+ i�
z 0

�
− 0 0 i�

z

− i�
z 0 0 − �

+

0 − i�
z − �

− 0
� , �B2�

P�q =�− i�1

2
�

− 0 i�3

2
�

+ − �2�
z

�2�
z − i�3

2
�

− 0 i�1

2
�

+� ,

�B3�

where �
�=�x� i�y and �

z =�z. d0 and a are optical defor-
mation potential and lattice constant, respectively.
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